| NEWS BRIEFS | New Literature |  | 2 |
| :---: | :---: | :---: | :---: |
| IN-DEPTH ARTICLE | Power-supply IC accommodates dual-voltage portable systems |  | 3 |
| DESIGN SHOWCASE | Convert 3V to 5V without inductors |  | 10 |
|  | 5 V , non-interruptible power supply delivers 1 A |  | 11 |
|  | Dual boost regulator handles heavy surge currents |  | 12 |
|  | Telephone tone generator requires no trimming |  | 13 |
|  | Third-order highpass filter has synthetic inductor |  | 15 |
| NEW PRODUCTS | Data Converters |  |  |
|  | - 12-bit 5V DACs have world's lowest power consumption | (MAX530/531/538/539) | 17 |
|  | - Dual 12-bit multiplying DACs have buffered voltage outputs | (MX7837/7847) | 17 |
|  | Op Amps/Comparators <br> - Low-power dual/quad op amps consume less than $1.2 \mu \mathrm{~A}$ | (MAX417/418/419) | 17 |
|  | - $10 \mathrm{~ns}, 5 \mathrm{~V}$ comparators- $70 \%$ less power than alternative devices | (MAX912/913) | 18 |
|  | - 6 ns comparators resolve 2 mV signals without oscillation-guaranteed | (MAX915/916) | 18 |
|  | - Low-cost micropower comparator/reference has $4 \mu \mathrm{~A}$ quiescent current | (MAX931-934) | 18 |
|  | Analog Switches and Multiplexers <br> - High-speed analog switches improve $\mathrm{r}_{\mathrm{ON}}$ matching and charge injection | (MAX301/303/305) | 19 |
|  | - Precision CMOS analog switches offer improved performance | (MAX317/318/319) | 19 |
|  | - Precision quad analog switch offers $35 \Omega$ matched on-resistances | (MAX333A) | 19 |
|  | Power Management |  |  |
|  | - PCMCIA analog controllers manage $\mathrm{V}_{\mathrm{PP}}$ and $\mathrm{V}_{\mathrm{CC}}$ terminals | (MAX613/614) | 20 |
|  | - Triple-output, $95 \%$-efficient controller powers notebook computers | (MAX783) | 20 |
|  | - Dual-output, 95\%-efficient controller powers notebook computers | (MAX786) | 21 |
|  | - Step-down dc-dc converters offer $5 \mathrm{~V} / 3.3 \mathrm{~V} / 3 \mathrm{~V}$ outputs | (MAX787/788/789) | 20 |
|  | $\boldsymbol{\mu P}$ Supervisors |  |  |
|  | - $\mu \mathrm{P}$-supervisor module includes backup battery | (MAX1691) | 21 |
|  | - ICs monitor $\pm 5 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ (or $\pm 15 \mathrm{~V}$ ) with $\pm 1.3 \%$ accuracy | (MAX8215/8216) | 21 |
|  | Interface |  |  |
|  | - 5V RS-232 transceivers protect against large transients and ESD | (MAX211E/213E/241E) | 23 |
|  | - Serial port reduces power by factor of eight | (MAX212) | 22 |
|  | - Complete 3V serial-data interface runs at 230kbits/sec | (MAX562) | 22 |
|  | Voltage Reference <br> - Calibrated, precision voltage references guarantee $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift in SO package! | (MAX676/677/678) | 22 |

## News Briefs

## NEW LITERATURE

Maxim has introduced over 600 analog ICs in the past 10 years, more than any analog company. To keep you informed on our newest developments, we offer the following 1994 publications:


## MAXIAV

1994 NEW RELEASES DATA BOOK

Volume III


$\qquad$


## BATTERY MANAGEMENT AND DC-DC CONVERTER CIRCUIT COLLECTION

Maxim's Battery Management and DC-DC Converter Circuit Collection-a power-supply applications guide for portable equipmenthighlights DC-DC converters, battery chargers, and voltage monitors. This guide is a valuable design reference of Maxim's most current recommended solutions. Each application circuit includes a complete schematic, a summary of relevant circuit parameters, a list of unique application features, a discussion of the application issues, and graphs of the most important characteristics.

## 1994 NEW RELEASES DATA BOOK, Vol. III

Maxim's 1994 New Releases Data Book, Vol. III compiles data sheets on Maxim's hottest 200 products for 1993/4, covering 10 product lines. Maxim is a complete analog supplier, offering: microprocessor supervisory circuits, data converters, references, power-control circuits, amplifiers, timers and counters, display circuits, RS-232 interface circuits, multiplexers, switches, voltage detectors, and analog filters.

## 1994 EVALUATION KIT DATA BOOK

Maxim's 1994 Evaluation Kit Data Book is a comprehensive collection of evaluation kit (EV kit) manuals and their corresponding data sheets. These EV kits speed the prototyping and design cycle by providing a proven PC board layout and all parts needed to evaluate your chosen IC. Most EV kits are shipped fully assembled to save even more time, and many include software for easy evaluation using your PC.

## Power-supply IC accommodates dual-voltage portable systems

A portable system's power supply is a complicated beast. It not only includes numerous sophisticated subsystems for voltage monitoring and power management, it may also generate dual $\mathrm{V}_{\mathrm{CC}}$ levels ( 3.3 V and 5 V ) and support the voltage switching required by new PCMCIA cards (Figure 1).

Other factors add complexity: the constant pressure to miniaturize, the need for increased battery life, and the noise-suppression measures made necessary in portable equipment by internal radio modems and pen digitizers. The result is an unprecedented challenge in powersupply design.
This article discusses the capabilities of a new IC that greatly simplifies power-supply design for notebook computers, handy-terminals, and other portable systems. The chip's sophisticated architecture and high level of integration address many of the main-supply requirements. Their usual order of importance is the following:

- Include necessary voltages and functions
- Improve efficiency and extend battery life
- Reduce costs
- Miniaturize
- Minimize EMI (for radios and pen-based computers)

These points will be examined in detail and related to the new chip's construction. The main supply in a notebook computer, for example, is deceptively simple. It should generate 12 V at 120 mA and $3.3 \mathrm{~V} / 5 \mathrm{~V}$ at approximately 3 A each, from a battery voltage ranging between 7 V and 20 V . As we shall see, the computer's required operating modes and the various constraints on size and efficiency complicate things tremendously.

Similar considerations apply to power supplies for other portable equipment as well, such as bar-code readers, pH meters, and medical instruments.


Figure 1. This block diagram shows the power supply in a typical notebook computer, highlighting the key controller ICs.

## Generate needed voltages, with accuracy

Supply-voltage accuracy is a key requirement in portable systems. Logic-board designers often ask for $\pm 3 \%$ accuracy in place of the usual $\pm 5 \%$. And in some applications, these voltages must be slightly offset from the nominal values. Higher voltages compensate for drops across the downstream load switches, and lower voltages extend battery life by minimizing power in the load.

Output accuracy is an unsung aspect of the powersupply designer's art. Tight accuracy must be maintained in spite of sharp line transients when the ac adapter is plugged in, and in spite of equally sharp load transients when the computer shifts from suspend mode to run mode. The skilled designer must balance loop gain, loop compensation, switching frequency, and filtering to maintain the required accuracy despite numerous ac and dc perturbations. Cost and efficiency goals, often in conflict with the above, must also be satisfied.


Figure 2. These block diagrams show the MAX782 internal functions (a), and details of the SMPS (switch-mode power supply) function (b).

A new buck-regulator IC from Maxim (MAX782) achieves excellent dc accuracy and ac-transient behavior while generating the required output voltages $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 12 V (Figure 2). It includes control circuitry for two pulse-width modulated (PWM) buck regulators. Its novel, current-mode PWM control (patent pending) produces a high unity-gain crossover frequency $(60 \mathrm{kHz})$ that allows quick recovery from line and load transients-within four or five cycles of the internal 300 kHz clock. The new control architecture compares low-level signals directly instead of adding gain first.

By feeding correctly weighted values of output error, reference voltage, inductor-current ramp, and slopecompensation ramp directly into a proprietary summing comparator, the circuit dispenses with conventional integrating error amplifiers and their associated phase shift and stability problems. This approach also allows the use of smaller filter capacitors.

Another way to reduce filter capacitance is by lowering the PWM loop gain. A deliberately controlled loop gain enables relatively low values of capacitance to establish ac stability, by producing a gain rolloff that reaches unity before the next pole or zero frequency. Setting the initial dc loop gain low allows this gain attenuation to be realized with only $30 \mu \mathrm{~F}$ per ampere of load current. The low gain introduces a load-regulation error of about $1.5 \%$, but tight initial accuracy on the output voltages (achieved through laser trimming) holds the overall accuracy to within $\pm 3 \%$.

Another basic concern is the input-voltage range. The low end is determined by the specified minimum battery voltage. At the high end, the regulator must withstand open-circuit output voltages from ac adapters and battery chargers. (The worst-case high voltage usually occurs with batteries removed and ac power applied.) The resulting input-range requirement for 6 -cell systems is 6 V to 24 V . Standard analog-CMOS processes break down at 16 V or so, but a new CMOS process from Maxim withstands 30 V . Developed specifically for the ICs in battery-powered supplies, it eliminates the need for inelegant hybrid devices and power-hungry bipolar ICs.

## Maximum battery life

After basic needs are met, the next goal for a portablesystem supply is ultra-high efficiency and maximum battery life. But battery life can't be inferred from snapshots of efficiency under fixed load. Instead, you must maximize efficiency over a broad range of load
currents, representing shutdown, suspend, and run-state load conditions.

During shutdown, when a portable system's load often consists only of static RAM, real-time clock, and powermanagement logic, the supply current is a few hundred microamps. This current must be supplied either from the backup battery or from the main battery, if present. (Drawing shutdown current from the main battery saves the backup until it's really needed.) Such keep-alive supplies are usually implemented with a linear regulator operating from the main battery.

For the suspend state, in which the main processor runs at a greatly reduced clock rate, the system's supply currents range from 3 mA to 10 mA . This current range is above the comfort level for linear regulators, so the preferred circuit is a switching regulator with reasonably high efficiency at light loads. The moderate to high currents drawn in the run state, on the other hand, demand the highest possible efficiency ( $>90 \%$ ).

A single MAX782 accommodates each of these distinct operating modes. For shutdown operation, the chip includes two low-dropout, micropower linear regulators that maintain 3.3 V and 5 V outputs while drawing only $70 \mu \mathrm{~A}$ of battery current. The critical 3.3 V output connects either to the main 3.3 V bus or to a separate back-up/keep-alive bus.

For suspend-state operation, the IC brings two circuit innovations to bear. A pulse-skipping mode allows the 3.3 V and 5 V buck regulators to shift smoothly between variable-frequency operation and the normal fixedfrequency PWM operation. This shift occurs automatically as load currents vary above and below $27 \%$ of full load, resulting in optimum efficiency for the regulators. The 5 V regulator, for example, is $95 \%$ efficient at heavy loads, and more than $80 \%$ efficient for load currents ranging from full scale down to $1 \%$ of full scale (Figure 3).

Switching noise is unavoidable, but the frequencies and control algorithms employed by the MAX782 insure that the frequency bands of interest for common applications are noise-free. Operation at 300 kHz , for instance, leaves a quiet band around the sensitive 455 kHz IF of commercial radio (Figure 4a). The harmonics shown (at $300 \mathrm{kHz}, 600 \mathrm{kHz}$, and 900 kHz ) remain fixed at those locations as the MAX782's pulse-width modulation responds to changes in load current.

The LT1148, on the other hand, is a similar powercontroller IC that responds to load-current changes by


Figure 3. For high currents, the MAX782's 5V output is more than 90\% efficient.
varying its nominal 100 kHz switching frequency. This frequency and its variation combine to fill the 455 kHz region with noise (Figure 4b). At lower load currents, the LT1148 maintains regulation by issuing 100 kHz pulses in a variable-burst mode whose spectral components contaminate the audio band (Figure 5b). The MAX782 also shifts to variable frequency at low load currents, but at 50 mA its 40 kHz frequency remains above the audio band (Figure 5a).

Another MAX782 innovation-fast, precise current sensing-allows the device to turn off its synchronousrectifier switch as the inductor's discharge current passes through zero. The synchronous rectifier thus continues
operating even for light loads, allowing the inductor current to become discontinuous. With both switching regulators operating, the entire 25 W MAX782 application circuit draws only $470 \mu \mathrm{~A}$ of quiescent battery current.
Competitive chips either disable the synchronous rectifier completely at light loads, or leave it on and pay a big penalty in quiescent supply current. (With the rectifier on, the reversal of inductor current after discharge causes a transfer of energy from the output capacitor back to the battery. Supply current rises because the losses associated with this transfer must be replenished from the battery.)
For run-state operation, the MAX782's balanced design and 300 kHz switching frequency provide $95 \%$ efficiency without the use of superconductors, solid-gold wires, or large magnetic cores. The circuit's n-channel MOSFET switches and bootstrapped operation enable high efficiency, even with standard surface-mount components (Figure 6).

Both buck regulators employ logic-level n-channel MOSFETs in place of the p-channel MOSFETs normally used as high-side switches. The n-channel devices' higher majority-carrier mobility results in much lower values of gate capacitance and reverse-transfer capacitance. For devices of equivalent on-resistance, the n-channel types cost $50 \%$ less. And for available devices in small SOIC packages, the n-channel parts exhibit only half as much on-resistance.
Gate drive for the high-side MOSFETs is obtained via "bootstrap" capacitors (Figure 7). When the synchronous switch is on, two $0.1 \mu \mathrm{~F}$ capacitors (connected to the BST pins) are charged to 5 V via two small-signal diodes.


Figure 4. At 1A load currents, the MAX782's 300 kHz fixed-frequency PWM control produces no spectral components near the 455 kHz IF band (a), but the LT1148's nominal 100 kHz variable-frequency control floods that band with noise (b).

Internal switches then turn on either MOSFET by connecting a charged capacitor across gate and source.

Start-up power to the MAX782 is delivered by a linear regulator operating on battery voltage. When the 5 V output achieves regulation, an internal switchover circuit automatically connects the chip's internal supply rail (via the FB3 pin) to the 5V output. Power for the chip and the gate drivers then comes from the $95 \%$-efficient 5 V supply, rather than the inefficient combination of battery and linear regulator. What's more, an adjustable soft-start capability precludes the battery-voltage transients that would otherwise occur each time a buck regulator turns on.

Another efficiency-enhancing feature is the chip's relatively low-voltage threshold for the output-current limit, established by 100 mV across a $25 \mathrm{~m} \Omega$ sense resistor. Other, less-precise designs require a larger drop of 150 mV to 200 mV across the same resistor, dissipating as much as 400 mW in additional power.

## Cost-saving architecture

The next priority in portable-system power supplies is cost reduction. Higher switching frequency in the MAX782 already saves costs through reduced pc area, cheaper magnetic cores, and all-surface-mount construction (which eliminates through-hole assembly steps). The chip's 12 V output offers further economy. Derived from an extra winding on the 5 V buck inductor, this output is almost free. Though the trick is widely known (it's often called a "coupled-inductor" or "buck with flyback winding" design), the MAX782 circuit's independent 12 V regulation provides an extra twist.

When a conventional circuit's high-side switch is on, the flyback circuit stores energy in the inductor core and then discharges a portion of that energy through the secondary winding to the 14 V output. During discharge, the primary voltage is $\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{SW}}$, where $\mathrm{V}_{\mathrm{SW}}$ is the synchronous rectifier's saturation voltage. (The secondary output equals the primary output times the turns ratio.) A linear regulator then drops the 14 V to 12 V .

Unfortunately, if the primary load is removed and the synchronous rectifier turns off at zero current (when no energy is stored), the 14 V output in this conventional circuit sags to ground. If the synchronous rectifier remains on, the primary current reverses and the transformer operates in the forward mode. Its output-current capability (theoretically infinite) prevents the 14 V output from sagging, but quiescent supply current remains high.

The MAX782, however, achieves excellent crossregulation with no penalty in quiescent supply current. A second feedback loop in the 5 V buck regulator senses the 14 V output $\left(\mathrm{V}_{\mathrm{DD}}\right)$. When $\mathrm{V}_{\mathrm{DD}}$ is in regulation, the rectifier operates normally and turns off at zero current. But if $\mathrm{V}_{\mathrm{DD}}$ falls below 13 V , the loop holds the synchronous rectifier on for an extra microsecond after the primary current reaches zero, causing the transformer to deliver energy in the forward mode (Figure 2b). $\mathrm{V}_{\mathrm{DD}}$ can therefore deliver hundreds of milliamps, even with the 5 V output unloaded.

Another device-the MAX783-derives $\mathrm{V}_{\mathrm{PP}}$ in the same way, but from 3.3 V instead of 5 V . It generates $\mathrm{V}_{\mathrm{PP}}$ with an auxiliary winding on the 3.3 V inductor, and regulates $\mathrm{V}_{\mathrm{PP}}$ via the 3.3 V synchronous rectifier. This


Figure 5. At 50mA load currents, both the MAX782 (a) and the LT1148 (b) have switched automatically to variable-frequency operation, but the LT1148's lower frequency contaminates the audio band.


Figure 6. All components in the MAX782 evaluation kit are surface mount.
makes the MAX783 more suitable for systems powered by 6 -cell NiCd batteries. Otherwise, the MAX782 and MAX783 are almost identical.

Another cost-saving feature is the inclusion of two linear regulators with outputs switchable to $0 \mathrm{~V}, 5 \mathrm{~V}$, or 12 V . They provide $\mathrm{V}_{\mathrm{PP}}$ switching for two memory-card sockets as specified by the PCMCIA memory-card standard. Normally, this switching function is implemented with a 12 V supply and a rat's nest of MOSFET switches. The MAX782, however, substitutes two linear-regulator pass transistors for the expensive low-r ${ }_{\text {ON }}$ MOSFETs. The internal pass transistors are cheap because they occupy little die area.

Decoding logic is also eliminated, because the MAX782 accepts $\mathrm{V}_{\mathrm{PP}}$ programming code directly from popular PCMCIA controllers such as Intel's 82365SL or Cirrus Logic's CL-PD6720. The MAX782 includes level translators that implement $3.3 \mathrm{~V} / 5 \mathrm{~V}$ PCMCIA switching for $\mathrm{V}_{\mathrm{CC}}$. As an alternative, the level translators (which remain alive in the standby mode) can serve as $1 \%$-accurate comparators in circuits that warn of low battery voltage.

## Miniaturization

Size and weight constraints usually have a slightly lower priority in the design process than does cost. But "creeping featuritis" can be a headache for the power-supply designer, who may be asked at the last minute to supply an extra half ampere, or to confine his circuit to a tiny L-shaped area of pc board.

The MAX782's high switching frequency ( 300 kHz ) lowers the necessary primary inductance to only $10 \mu \mathrm{H}$-one-fifth of that required in competing IC circuits. The lower
inductance means smaller cores, fewer turns, and less power loss in the wire resistance.
The 36-pin monolithic MAX782 also supports miniaturization through its high level of integration, having absorbed the functions of 12 V generation, linear regulation, PCMCIA switching, and control for two independent $\mathrm{V}_{\mathrm{CC}}$ buck regulators. To achieve further size reduction, a shrink small-outline package (SSOP) with tight lead pitch ( 32 mil) replaces conventional PLCC and SOIC packages.

## Noise and ripple reduction

Low-noise/low-EMI power supplies are often required by personal communicators and pen-based personal digital assistants (PDAs). Though poised to scale new heights in personal computing, these devices have yet to prove themselves to the FAA. Supposedly, EMI from a laptop computer was the cause of a recent disruption in the navigation system of an airliner bound for New York.

PDAs and similar devices often include radio modems or RF/electromagnetic-actuated pen-entry digitizers powered directly from the battery. Current switching within the radio can produce voltage ripple, which, reflected from the battery back into the radio, can interfere with the IF signal. As discussed earlier, radio designers are therefore likely to specify suppression of all fundamental and harmonic interference in the vicinity of the IF-near 455 kHz , for example.

The MAX782's fixed-frequency PWM architecture provides the predictable frequency spectrum required in such applications. Its free-running oscillator, operating at 200 kHz or the pin-strap option of 300 kHz , is factorytrimmed to $\pm 10 \%$ tolerance and requires no external capacitor.

For demanding applications, you can further reduce noise by synchronizing the internal oscillator to an external clock. Even in its low-power pulse-skipping mode, the MAX782's switching pulses, triggered by the fixedfrequency clock, are more predictable than those of a chaotic burp-mode controller.

The MAX782 has been system-engineered as the main component in portable-system power supplies. One of a family of new power-supply ICs, it leapfrogs the performance of earlier devices by combining highfrequency generation and high efficiency-features that once were mutually exclusive. Other devices in the family are intended either as resonant-mode CCFT/LCD supplies (MAX753/MAX754), or as main supplies for subnotebook computers (MAX781/MAX782).
(Circle 1)


Figure 7. The multi-function MAX782 generates high-side gate-drive voltages for the external power MOSFETs.

## DESIGN SHOWCASE

## Convert 3V to 5V without inductors

Charge-pump ICs can either invert or double an input voltage ( 3 V to -3 V or 6 V , for example). The charge pump operates without inductors, but it doesn't regulate the output and it doesn't easily boost 3 V to an intermediate level such as 5 V . By adding a comparator and reference (IC2 in Figure 1) you can generate arbitrary outputs (such as 5 V ) and regulate them as well.

The charge pump (IC1) has an internal oscillator whose 45 kHz operation transfers charge from C 1 to C 2 , causing the regulated output to rise. When the feedback voltage (pin 3 of IC2) exceeds 1.18 V , the IC2 comparator output goes high and turns off the oscillator via Q1.

Comparator hysteresis—easily added at IC2—is set to zero because the control loop requires no hysteresis. The oscillator generates only two cycles after turn-on, which is always enough to drive $\mathrm{V}_{\text {OUT }}$ slightly above the desired level before feedback turns the oscillator off again. The resulting


Figure 1. By configuring a comparator and transistor to control the oscillator in a charge pump, you enable the pump to generate a regulated output of any reasonable value.
output ripple depends mainly on the input voltage and the output load current (Figure 2).
You can reduce output ripple at the expense of circuit efficiency by adding a small resistor of about $1 \Omega$ (not shown) in series with C 1 . Ripple also depends on the value and ESR associated with C1; smaller values of C 1 transfer less charge to C 2 , producing smaller jumps in $\mathrm{V}_{\text {OUT }}$.

For those not afflicted with inductorphobia, Maxim offers various inductor-based switching regulators for boosting 3 V to 5 V . They include the MAX731, MAX741, MAX756, MAX856, and others.
(Circle 2)

| LOAD <br> RESISTANCE <br> $(\Omega)$ | OUTPUT <br> VOLTAGE <br> $(\mathbf{V})$ | OUTPUT <br> RIPPLE <br> $(\mathbf{m V p}-\mathbf{p})$ |
| :---: | :---: | :---: |
| $\infty$ | 5.00 | 30 |
| 10 k | 5.00 | 35 |
| 1 k | 5.00 | 100 |
| 100 | 4.96 | 100 |
| 50 | 4.59 | 150 |

(a) Supply $=+3.0 \mathrm{~V}$

| LOAD <br> RESISTANCE <br> $(\Omega)$ | OUTPUT <br> VOLTAGE <br> $(\mathbf{V})$ | OUTPUT <br> RIPPLE <br> $(\mathbf{m V p}-\mathbf{p})$ |
| :---: | :---: | :---: |
| $\infty$ | 5.01 | 55 |
| 10 k | 5.01 | 55 |
| 1 k | 5.01 | 55 |
| 100 | 4.98 | 170 |
| 50 | 4.90 | 170 |

(b) Supply $=+3.3 \mathrm{~V}$

| LOAD <br> RESISTANCE <br> $(\Omega)$ | OUTPUT <br> VOLTAGE <br> $(\mathbf{V})$ | OUTPUT <br> RIPPLE <br> $(\mathbf{m V p - p})$ |
| :---: | :---: | :---: |
| $\infty$ | 4.98 | 10 |
| 10 k | 4.98 | 25 |
| 1 k | 4.98 | 25 |
| 100 | 4.64 | 70 |
| 50 | 4.29 | 90 |

(c) Supply $=+2.7 \mathrm{~V}$

Figure 2. Output ripple in the Figure 1 circuit depends on the input voltage and load current.

## DESIGN SHOWCASE

## 5 V , non-interruptible power supply delivers 1 A

The 5 V output of Figure 1 remains uninterrupted during loss of the main 5 V supply. What's more, it maintains a $\pm 5 \%$ output tolerance while delivering 1A for 80 minutes thereafter.

During normal operation, the main supply is monitored by the $\mathrm{V}_{\mathrm{CC}}$ terminal of the supervisory circuit (IC1). This chip holds Q2 on by asserting RESET high. While on, Q2 holds the dc-dc controller (IC2) in shutdown mode, turns on Q1, and turns on Q3, which routes a trickle charge to the battery stack.

When the main supply voltage drops below IC1's reset threshold (typically 4.65 V ), $\overline{\text { RESET }}$ quickly turns off Q2 and Q3, bringing IC2 out of shutdown. IC2 then boosts the non-interruptible output back to 5V. After the main supply dips below threshold, $\overline{\text { RESET }}$ remains low for 200 ms whether or not the voltage returns above threshold. This action assures an orderly completion of the switchover.

Q1 is a low-r ${ }_{\mathrm{DS}(\mathrm{ON})}$, p-channel MOSFET that drops only 60 mV at 1 A . Its connections-drain to the main supply and source to the uninterruptible 5 V outputare backwards with respect to the usual configuration for p-channel high-side switches. The connections shown prevent Q1's body diode from draining the battery when the main supply fails. Also, this diode conducts when the main supply initially turns on, which assures a gate drive sufficient to turn the MOSFET fully on (approximately 4.5V).
The battery manufacturer (Ovonic) recommends that you apply a 230 mA trickle charge to the 2300 mAh nickel-metal-hydride (NiMH) cells. To avoid exceeding this recommended rate, you must select R2 according to the worst-case (highest) beta value for Q3. The beta range is 100 to 300 . So, for a $\pm 10 \%$ supply, R 2 should be about $6 \mathrm{k} \Omega$. If a 12 V supply is available, you can reduce the battery's recharge time by adding a battery-charger IC to control the charging rate.
(Circle 3)


Figure 1. Despite brownouts or loss of the main 5V supply, this non-interruptible power supply maintains the 5 V output within $\pm 5 \%$. It supplies 1 A at 5 V for 80 minutes with the battery shown.

## DESIGN SHOWCASE

## Dual boost regulator handles heavy surge currents

Among 2-cell boost regulators, five watts ( 5 V at 1 A ) is "high power." But, obtaining even 5 W from a 2-cell or 3-cell battery is not a trivial problem. Peak currents exceed 2A, and the small voltage drops they produce in the power devices, battery, capacitors, and pc wiring can lead to poor efficiency and failure. The high internal impedance of alkaline AA batteries, for example, can support 5 W loads only for short surges.
Combining the outputs of two simple boost regulators with a diode-OR connection (Figure 1) provides a surge-current capability for small systems that must support intermittent radio transmissions or disk spin-ups. The main regulator (controlled by the LX terminal) contributes high efficiency during normal operation and also guarantees start-up at low voltage (its internal power MOSFET has a gate-threshold voltage of 0.8 V ).

The auxiliary surge-current regulator, on the other hand, has an external MOSFET and is not limited to 5 W . It can be tailored for heavier loads by substituting larger inductors and larger capacitors.

The chip offers a low-power mode that lowers the peak currents, which raises the light-load efficiency by 10\% (Figure 2).

In most cases, it's not a good idea to connect unsynchronized switching regulators in parallel: the oscillators can produce unwanted beat frequencies, and the load can monopolize current from one of the outputs. This circuit avoids such problems because the regulators differ greatly in switching frequency and output-current capability.
(Circle 4)


Figure 2. Conversion efficiency in the Figure 1 circuit depends


Figure 1. This IC, designed as a power-supply controller for palmtop computers with flash memory, includes two switching regulators. Combining the outputs with a diode-OR connection and common feedback produces an efficient 5V output with surge-current capability.

## DESIGN SHOWCASE

## Telephone tone generator requires no trimming

Many products that connect to phone lines (modems, for instance) incorporate a "call-progress monitoring" function known as CPM. CPM circuits "listen" to the lines as a human would, and respond according to what they "hear." You shouldn't dial a number unless you first hear a dial tone, for example. Neither should your computer.

Tone accuracy is not very important when people monitor the call-progress tones, but the use of computers for this purpose has produced a need for tone-accuracy specifications to prevent errors in interpretation. Accordingly, CCITT has introduced the North American Precise Audible Tone Plan (the following data is from the CCITT Green Book, Volume VI-4):

| USE | FREQUENCIES (Hz) |  |  | POWER <br> (per tone, at <br> exchange) | CADENCE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 5 0}$ | $\mathbf{4 4 0}$ | $\mathbf{4 8 0}$ | $\mathbf{6 2 0}$ |  |  |
| -13 dBm 0 | Continuous |  |  |  |  |  |
| Busy |  |  | $\checkmark$ | $\checkmark$ | -24 dBm 0 | 0.5 sec on; <br> 0.5 sec off |
| Re- <br> Order |  |  | $\checkmark$ | $\checkmark$ | -24 dBm 0 | 0.2 sec on; <br> 0.3 sec off' <br> or <br> 0.3 sec on; <br> 0.2 sec off |
| Ringing |  | $\checkmark$ | $\checkmark$ |  | $-19 \mathrm{dBm0}$ | 2 sec on; <br> 4 sec off |
| Call <br> Waiting |  | $\checkmark$ |  |  | $-13 \mathrm{dBm0}$ | 0.3 sec on, <br> every 10sec |

Figure 1 illustrates a simple circuit for generating single or dual tones. They must be $\pm 0.5 \%$ accurate in frequency, and they must be gated as shown in the "Cadence" column (a $\mu \mathrm{P}$ can control the cadence). This generator suits applications such as the tonegeneration portion of a test stimulus for CPM circuits.

Generating a sine wave is generally more difficult than generating a square wave of the same frequency. The simplest technique is to filter a square wave of the desired frequency; removing its harmonics leaves you with the fundamental sine wave-the desired signal. For a dual-tone generator you would seem to need two harmonic-removal filters, but a single filter will do if the two square waves are reasonably close in frequency.
Square waves contain only odd harmonics, so the lowest frequency component to be removed (the critical frequency) is the third harmonic of the lower-frequency square wave. The filter must pass the fundamental of the higher-frequency square wave. To avoid using two filters, each of these


Figure 1. In this tone generator, the uncommitted op amp of the lowpass filter IC1 acts as a summing amplifier. The amplifier's gain level assures that 5V-logic inputs will not cause clipping at the two-tone output.

## DESIGN SHOWCASE



Figure 2. These time-domain waveforms show the low and high square-wave tones for the "ringing" signal (lower traces), and the sinusoidal filtered sum (top trace).
square-wave frequencies must be an even-integer divisor of the filter's switched-capacitor clock. (This requirement forces the signal to be square-i.e., with a $50 \%$ duty cycle.)
As another requirement, the ratio of the lower tone's 3rd harmonic to the filter's corner frequency must be greater than the filter's transition ratio. (Transition ratio is the edge of the stopband divided by the edge of the passband.) The parameters necessary for generating each tone pair (or tone) are summarized in the table below.

The switched-capacitor lowpass filter (IC1), with a transition ratio of 1.5 and a clock-to-corner ratio of 100 , meets each of these four sets of requirements. Setting the cutoff frequency to 528 Hz , for example, allows 440 Hz and 480 Hz to pass. The resulting 792 Hz stopband $(528 \mathrm{~Hz}$ times the 1.5 transition ratio) blocks the critical third harmonic of 440 Hz $(1320 \mathrm{~Hz})$, enabling generation of the ringing signal.


Figure 3. In this frequency spectrum of the top trace in Figure 1, the highest-amplitude spur (spurious frequency) is at least $54 d B$ down from the twin-tone level.

To generate low and high tones for the ringing signal, divide 52.8 kHz by the divisors 120 and 110 . The division scheme (left to the reader) can be implemented with simple logic, a PAL, or an upcounter/timer chip. If you use a programmable divider, you should follow it with a divide-by-two circuit to assure a $50 \%$ duty cycle. (The other CPM signals are produced in a similar way.)
Dual tones for the ringing signal are illustrated in the time domain (Figure 2) and the frequency domain (Figure 3). The frequency domain shows that the generator is free of spurious tones. In some CPM applications, tone detection involves a combination of frequency verification and guard margin. By verifying that tone energy is sufficiently above the remaining spectral energy, the tone margin ensures that voice and other signals won't fool the system into thinking a CPM tone is present.
(Circle 5)

| USE | LOW <br> TONE | HIGH <br> TONE | CRIT. <br> FREQ. | MINIMUM <br> TRANSITION <br> RATIO | CLOCK | LOW-TONE <br> DIVISOR | HIGH-TONE <br> DIVISOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dial | 350 | 440 | 1050 | 1.70 | 61600 | 176 | 140 |
| Busy/Re-Order | 480 | 620 | 1440 | 1.61 | 89280 | 186 | 144 |
| Ringing | 440 | 480 | 1320 | 2.50 | 52800 | 120 | 110 |
| Call Waiting | 440 | - | 1320 | 2.50 | 52800 | 120 | - |

Note: $\quad$ The three master-clock frequencies have a common multiple of 34,372,800.

## DESIGN SHOWCASE

## Third-order highpass filter has synthetic inductor

Inductors have a bad reputation as filter components-they not only transmit EMI, they act as antennas for receiving EMI as well. To avoid these problems, you can simulate the impedance of an inductor with the combination of two wideband transconductance amplifiers (WTAs) and a capacitor (Figure 1). The circuit acts as a synthetic inductor $\left(\mathrm{L}_{\mathrm{SYN}}\right)$ with one end connected to ground.

By forcing a current at $\mathrm{L}_{\text {SYN }}$ and measuring the resulting voltage, you can determine the equivalent impedance $\mathrm{Z}_{\mathrm{EQ}}$ :

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{EQ}}= & \frac{\mathrm{sC}}{(\mathrm{gm} 1)(\mathrm{gm} 2)} \\
& \text { where } \mathrm{gm} \equiv \text { transconductance. }
\end{aligned}
$$

The equivalent inductance, therefore, is :

$$
\mathrm{L}_{\mathrm{EQ}}=\frac{\mathrm{C}}{(\mathrm{gm} 1)(\mathrm{gm} 2)}
$$

This single-port network clearly offers the frequencyproportional impedance of an inductor, along with an advantage and a limitation: the inductance value can be large if $(\mathrm{gm} 1)(\mathrm{gm} 2) \ll 1$, but one end of the network must always connect to ground. Highpass, all-pole ladder filters make good applications because all their inductors connect to ground. Two WTAs and a capacitor must be substituted for each one, so you should choose a configuration with the minimum number of inductors.


Figure 1. This single-port network simulates an inductor with two wideband transconductance amplifiers and a capacitor.

To be cost-effective, your design should feature a series capacitor at each end of the filter, with the simulated inductor acting as a shunt between them (Figure 2). The input capacitor blocks any dc applied to the filter, and the output capacitor blocks any dc offset introduced by the synthetic inductor. Though constructed with active components, the filter thus retains some of the advantages of a passive filter.

In an actual circuit (Figure 3), C2 and C3 are bypass capacitors and C 2 is part of the simulated inductor. The transconductance for each WTA is set by an external resistor (R1 or R3) according to the relationship $\mathrm{gm}=8 / \mathrm{R}$. Because the simulated inductance depends on the product of these transconductances, it may appear that you have a range of choices for each. But the optimum circuit for a given application allows the full range of output swing for each WTA, which restricts the gm values.

To determine these optimal gm values, start with equal transconductances and simulate the filter in Spice using " $g$ " elements for the amplifiers. While sweeping the frequency at least one decade above and below the filter's corner frequency, observe each WTA output for its peak voltage magnitude (the two peaks may occur at different frequencies).

At the synthetic inductor's port (pin 13 of IC2), the peak value is demanded by the filter and cannot be


Figure 2. This simple ladder filter is a good application for the simulated inductor, which must have one end connected to ground.

## DESIGN SHOWCASE



Figure 3. A 3rd-order Butterworth highpass filter is constructed by substituting the simulated inductor of Figure 1 in the ladder filter of Figure 2. The filter has a 3.2 kHz corner frequency and $a-6 d B$ loss due to the source and load impedances.
changed; a real inductor would produce the same peak. You therefore adjust the other peak to match. Let K equal the ratio of gm 2 to gm 1 . Gain is proportional to transconductance, so you divide gm1 by K and multiply gm 2 by K. Finally, rerun the Spice simulation with these new gm values to verify that the peaks are equal and that the filter shape has not changed.
The filter exhibits a maximum attenuation of $58.6 \mathrm{~dB} /$ decade (Figure 4). The slope decreases at lower frequency because the synthetic inductor's Q is affected by its series resistance. (Comparable 1.25 mH inductors also have an appreciable resistance of $53 \Omega$ or so.) At 10 Hz , for instance, the attenuation for an ideal filter is -90 dB . For this circuit, the attenuation is -80 dB .
(Circle 6)


Figure 4. The Figure 3 filter has a maximum attenuation of 58.6dB per decade.

## NEW PRODUCTS

## 12-BIT 5V DACs HAVE WORLD'S LOWEST POWER CONSUMPTION

- 8-pin SOIC and DIP (MAX538/MAX539)
- Internal voltage reference (MAX530/MAX531)

The MAX530, MAX531, MAX538, and MAX539 are 12-bit, voltage-output D/A converters well suited for portable and battery-powered applications. They operate on 5 V supplies and draw supply currents as low as $300 \mu \mathrm{~A}$ (maximum).

The MAX530 (parallel input) and MAX531 (serial input) have internal references and selectable output ranges of 0 V to $2.048 \mathrm{~V}, 0 \mathrm{~V}$ to 4.096 V , or $\pm 2.048 \mathrm{~V}$. Each performs four-quadrant multiplication without external resistors or op amps. For space-sensitive applications that provide an external reference, choose 8-pin SO/DIP versions of the MAX531: the MAX538 (0V to 2.048 V output range) and the MAX539 (0V to 4.096 V output range).

The serial interface for MAX531/MAX538/MAX539 devices is compatible with

## DUAL 12-BIT MULTIPLYING DACs HAVE BUFFERED VOLTAGE OUTPUTS

The MX7837 and MX7847 are dual 12-bit, multiplying D/A converters. Each includes feedback resistors and output amplifiers capable of developing $\pm 10 \mathrm{~V}$ across a $2 \mathrm{k} \Omega$ load. Each achieves full 12-bit performance across the operating temperature range without external trims.

The fully parallel MX7847 has 12 data lines and a separate latch for each converter. The double-buffered MX7837, whose eight data lines accept eight bits followed by four bits, has separate 8 -bit and 4-bit latches preceding each 12 -bit DAC latch.


SPI $^{\mathrm{TM}}$, QSPI $^{\mathrm{TM}}$, and Microwire ${ }^{\mathrm{TM}}$ serialinterface standards. These devices also provide serial-data outputs useful for daisychaining multiple D/A converters. The MAX530's double-buffered, parallel data inputs are compatible with 4 -, 8 -, and 16 -bit microprocessors, and all data inputs are set to zero during power-up by an internal reset circuit. All devices offer low integralnonlinearity errors of $\pm 1 / 2 \mathrm{LSB}$ (maximum) over temperature.

The MAX530 comes in 24-pin narrowDIP, wide-SO, and SSOP packages; the MAX531 comes in 14-pin DIP and SO packages; and the MAX538/MAX539 come in 8-pin DIP and SO packages. Each type includes versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extendedindustrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. Prices start at $\$ 4.85$ (1000 up, FOB USA).
(Circle 7)

## 10ns, 5V COMPARATORS70\% LESS POWER THAN ALTERNATIVE DEVICES

The MAX912/MAX913 dual/single, high-speed, low-power precision comparators feature 10 ns propagation delays and 7 mA supply currents (per comparator). Ideal for 5 V and $\pm 5 \mathrm{~V}$ applications, the devices have wide inputvoltage ranges that extend from below the negative supply rail to within 1.5 V of the positive supply rail. This feature, available in few other single-supply comparators, eliminates the need for a negative supply in many applications.

The MAX913 is an improved plug-in replacement for the LT1016 and the LT1116. MAX912/MAX913 devices consume only $30 \%$ as much power as the LT1016 (which Maxim also second sources), yet they have equivalent speed and a wider input range. And unlike most other high-speed comparators, the MAX912 and MAX913 remain stable when driven by slow-moving input signals. Both devices have differential inputs, complementary TTL-compatible outputs, and independent latch-enable controls for each comparator.

The single MAX913 comes in 8-pin DIP and SO packages, and the dual MAX912 comes in 16-pin DIP and narrow-SO packages. Both include versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. Prices ( 1000 up, FOB USA) start at $\$ 2.55$ for the MAX913 and $\$ 3.90$ for the MAX912.
(Circle 10)


## 6ns COMPARATORS RESOLVE 2 mV SIGNALS WITHOUT OSCILLATIONGUARANTEED

The MAX915/MAX916 (single/dual) edge-triggered comparators, unlike industrystandard TTL comparators, have unique master/slave architectures that allow resolution of input voltages as small as 2 mV . This performance extends over the commonmode range, without oscillation. Propagation delay (only 6 ns ) is insensitive to input overdrive-the delay values are constant whether the overdrive is 3 mV or 1 V .

MAX915 and MAX916 devices operate from dual $\pm 5 \mathrm{~V}$ supplies or from single 5 V -to- 10 V supplies. Power consumption is only 70 mW per comparator.

## LOW-COST MICROPOWER COMPARATOR/ REFERENCE HAS 4 4 A QUIESCENT CURRENT REFERENCE HAS 4 4 A QUIESCENT CURRENT

## - Ideal for 3V micropower systems

The MAX931, MAX932, MAX933, and MAX934 comparator/reference ICs feature single, dual, or quad micropower comparators with $2 \%$-accurate references. Each is a lowcost alternative to the corresponding part in the $1 \%$-accurate MAX921-MAX924 series. (All but the MAX922/MAX932 pair have identical pinouts.)

As the lowest-power combination of comparator and reference available, the MAX931 is ideal for micropower 3 V systems. It draws less than $4 \mu \mathrm{~A}$ maximum quiescent current over the operating temperature range, yet can source 40 mA continuously. Its propagation delay is only $12 \mu \mathrm{~s}$, and it switches logic states without producing unwanted glitches in the supply voltage.

MAX931, MAX932, and MAX933 devices provide HYST inputs that let you add hysteresis with a simple connection of two external resistors. (Hysteresis—which prevents oscillation-is added to

And, they suit 5 V ground-sensing applications because the input common-mode range extends to the negative supply rail.

The MAX915 comes in 8-pin DIP and SO packages, tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. The MAX916 comes in 16-pin DIP and narrow-SO packages, screened for the commercial and extendedindustrial ranges. Prices ( 1000 up, FOB USA) start at $\$ 2.55$ for the MAX915 and $\$ 3.90$ for the MAX916.
(Circle 11)

.5V. Input voltage ranges extend from the negative rail to within 1.3 V of the positive rail. Propagation delay (with 10 mV overdrive) is $12 \mu \mathrm{~s}$. You can monitor voltages above or below the 1.18 V reference by attenuating the input or reference voltage.

MAX931, MAX932, and MAX933 ICs come in 8-pin DIP and SO packages; the MAX934 comes in 16-pin DIPs and narrow SOs. All are available in commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ versions. Prices start at $\$ 0.98$ (1000 up, FOB USA).
(Circle 12)


## PRECISION QUAD ANALOG SWITCH OFFERS $35 \Omega$ MATCHED ONRESISTANCES

The MAX333A is a CMOS, precision, quad single-pole/double-throw (SPDT) analog switch. Its four independent switches have low on-resistance ( $35 \Omega$ maximum), close matching ( $<2 \Omega$ variation among the channels), and excellent flatness ( $<3 \Omega$ variation over the analog signal range).

Other improvements made possible by Maxim's new 44V silicon-gate process are lower charge injection ( $<10 \mathrm{pC}$ ), break-before-make action (10ns typical), and fast switching (turn-off <145ns, turn-on <175ns). The MAX333A operates either with bipolar supplies ( $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ ) or with a single supply ( 10 V to 30 V ). Maximum quiescent power consumption is only 3 mW .

Logic inputs are guaranteed TTL and CMOS compatible over the operating temperature range. Logic and analog signals may range between the supply voltages without damage to the MAX333A. One MAX333A provides upgraded performance for either two DG403 dual-SPDT switches or a DG211/DG212 pair used as a quad SPDT switch.

The MAX333A comes in 20-pin DIP and wide-SO packages, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. Prices start at $\$ 3.60$ (1000 up, FOB USA).
(Circle 13)

## HIGH-SPEED ANALOG SWITCHES IMPROVE ron MATCHING AND CHARGE INJECTION

The MAX301, MAX303, and MAX305 are high-speed dual analog switches with the following configurations: MAX301-single-pole/single-throw (SPST), both normally closed (NC); MAX305-double-pole/single-throw (DPST), both NC; and MAX303-DPST, one normally open (NO) and one NC. Switch leakage is very low ( $<250 \mathrm{pA}$ ).

Maxim's new 44V silicon-gate process improves performance. The MAX301/ MAX303/MAX305 ICs have low charge injection ( 15 pC ), and their low on resistance ( $35 \Omega$ maximum) remains flat to within $3 \Omega$ over the analog-signal range. Within a device, on-resistances are matched to within $2 \Omega$ maximum.

Each device maintains CMOS-logic compatibility and fast switching (turn-on is

## PRECISION CMOS ANALOG SWITCHES OFFER IMPROVED PERFORMANCE

The MAX317/MAX318/MAX319 are single-pole/single-throw monolithic CMOS analog switches. The MAX317 is normally closed (NC), the MAX318 is normally open (NO), and the MAX319 includes one NO and one NC switch. Each device consumes less than $35 \mu \mathrm{~W}$.

These devices are fabricated with a new silicon-gate process that yields significant design improvements: $r_{\mathrm{ON}}$ is low ( $<35 \Omega$ ), flat to within $3 \Omega$ over the analog-signal range, and matched to within $2 \Omega$ between channels. Charge injection is extremely low, and guaranteed to be no
$<150 \mathrm{~ns}$, turn-off is $<100 \mathrm{~ns}$ ) while operating either with a single supply of 10 V to 30 V , or with dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. Quiescent current is only $\pm 1 \mu \mathrm{~A}$ maximum with $\pm 15 \mathrm{~V}$ supplies. A separate logic-supply terminal can implement TTL compatibility regardless of the power-supply levels. Off switches can block rail-to-rail voltages, and the digital inputs draw $\pm 1 \mu \mathrm{~A}$ maximum.

MAX301/MAX303/MAX305 switches come in 20 -pin LCCs and 16 -pin DIP and narrow-SO packages, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. (For MIL-STD-883 versions, please consult the factory.) Prices start at $\$ 1.23$ for the MAX301, and $\$ 2.57$ for the MAX303 and MAX305 (1000 up, FOB USA).
(Circle 14)
greater than 10 pC . Unlike their predecessors, the Maxim parts are guaranteed to withstand electrostatic discharge (ESD) in excess of $\pm 2000 \mathrm{~V}$ (per MIL-STD 883, Method 3015.7).

Digital inputs are TTL and CMOS compatible. The switches offer low leakage (less than 250 pA ) and fast operation (less than 175 ns to turn on, less than 145 ns to turn off). The 44 V maximum breakdown voltage lets the switches withstand rail-to-rail analog voltages.

MAX317/MAX318/MAX319 devices come in 8-pin DIP and SO packages, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. Prices start at $\$ 1.05$ (1000 up, FOB USA).
(Circle 15)

## TRIPLE-OUTPUT, 95\%-EFFICIENT CONTROLLER POWERS NOTEBOOK COMPUTERS

The MAX783 power-supply controller is a system-engineered device that provides regulated supply voltages for notebook computers and other battery-powered equipment. It includes dual PCMCIA ( $\mathrm{V}_{\mathrm{PP}}$ ) outputs, and step-down regulators for 3.3 V and 5 V .

The $V_{\text {PP }}$ outputs may be programmed for $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or 12 V . Two precision comparators perform low-battery detection, and two low-dropout, micropower linear regulators act as backup supplies for CMOS RAM and real-time clocks. (See page 3 for an in-depth discussion of the similar MAX782.)

Efficiency for the main $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supplies runs as high as $95 \%$ for 2A loads, and greater than $80 \%$ for loads from 3 mA to 3A. Maxim's Idle-Mode ${ }^{\text {TM }}$ operation governs the regulation at light loads. At heavier loads, the operation shifts automatically to synchronous rectification and pulse-width modulation (PWM). A high operating frequency $(200 \mathrm{kHz}$ or 300 kHz$)$ allows use of physically small external

components, and the current-mode PWM architecture permits filter-capacitor values as small as $30 \mu \mathrm{~F}$ per ampere of load.

The MAX783 has fast ac response, thanks to a high ( 60 kHz ) unity-gain crossover frequency that enables recovery from line and load transients within four to five clock cycles. Low-cost, external nchannel MOSFETs, and high-level integration lower the system costs. Lowering costs even further is an integral flybackwinding controller, which generates a high-side 15 V for the $\mathrm{V}_{\mathrm{PP}}$ outputs.

The input range is 5.5 V to 30 V , and the quiescent current $(420 \mu \mathrm{~A})$ drops to $70 \mu \mathrm{~A}$ in standby mode (when only the linear regulators are active). Shutdown current is only $25 \mu \mathrm{~A}$. Other features include low-noise, fixed-frequency PWM operation for moderate

## STEP-DOWN dc-dc CONVERTERS OFFER 5V/3.3V/3V OUTPUTS

The MAX787/MAX788/MAX789 step-down dc-dc converters have output voltages of 5 V (MAX787), 3.3 V (MAX788), and 3V (MAX789). They require few external components because the oscillator, 5 A power switch, and control circuitry are all on-chip. Quiescent supply currents ( 8.5 mA each) drop to $140 \mu \mathrm{~A}$ in the shutdown mode.

High operating frequencies $(100 \mathrm{kHz})$ allow each device to implement the standard "buck" topology with a small external inductor, Schottky diode, and output filter capacitor. Input voltages range from 8 V to 40 V (to 60 V for the highvoltage "H" versions). Each regulator
offers cycle-by-cycle current limiting to protect against overcurrent and shortcircuit faults. Excellent dynamic characteristics provide a well-behaved transient response.

Available in 5-pin TO-220 packages, the MAX787/MAX788/MAX789 devices each offer a commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ version. Prices start at $\$ 4.52$

to heavy loads, and a synchronizable oscillator for noise-sensitive applications such as communicating computers and electromagnetic pen-based systems.

The MAX783 comes in 36-pin SSOPs, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) temperature ranges. Prices start at $\$ 5.95$ (1000 up, FOB USA).
(Circle 16)

## PCMCIA CONTROLLERS MANAGE VpP AND Vcc TERMINALS

MAX613 and MAX614 analog power controllers operate with standard PCMCIA digital controllers such as Intel's 82365SL and Vadem's VG-365, VG-465, and VG468. The MAX613 and MAX614 control the $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{PP}}$ voltages applied to computer card slots-those complying with Release 2.0 of the Personal Computer Memory Card International Association (PCMCIA).

The MAX614 controls one or both $\mathrm{V}_{\mathrm{PP}}$ terminals on a PCMCIA slot with a single $\mathrm{V}_{\mathrm{PP}}$ output that asserts $\mathrm{V}_{\mathrm{PP}}, \mathrm{V}_{\mathrm{CC}}, 0 \mathrm{~V}$, or high impedance according to codes generated by the digital controller. The MAX614 also includes a level shifter for its gate-drive output (DRV), which controls $\mathrm{V}_{\mathrm{CC}}$ via an external MOSFET.

The MAX613 provides independent control of the two $\mathrm{V}_{\mathrm{PP}}$ terminals via two $\mathrm{V}_{\mathrm{PP}}$ outputs, each programmed by separate 2-bit codes. A third 2-bit code allows the DRV3 and DRV5 outputs, each with separate internal level shifters and driving separate external MOSFETs, to apply 3 V or 5 V to the $\mathrm{V}_{\mathrm{CC}}$ terminal. MAX613 and MAX614 devices have $1.6 \Omega$ internal power switches and $50 \mu \mathrm{~A}$ (maximum) quiescent supply currents.

The MAX613 comes in 14-pin DIP and narrow-SO packages; the MAX614 comes in 8-pin DIP and narrow-SO packages. Both include versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature ranges. Prices (1000 up, FOB USA) start at $\$ 1.68$ for the MAX613 and $\$ 1.48$ for the MAX614.
(Circle 18)

## DUAL-OUTPUT, 95\%-EFFCIENT CONTROLLER POWERS NOTEBOOK COMPUTERS

The MAX786 power-supply controller, suitable for use in notebook computers and other battery-powered equipment, includes separate step-down regulators for 3.3 V and 5 V . It also includes two precision comparators for low-battery backup, and two low-dropout, micropower linear regulators for supplying backup power to CMOS RAM and real-time clocks.

Efficiency for the 3.3 V and 5 V supplies runs as high as $95 \%$ for 2A loads, and greater than $80 \%$ for loads from 3 mA to 3A. Maxim's Idle-Mode ${ }^{\text {TM }}$ operation governs the regulation at light loads. At heavier loads, the operation shifts automatically to synchronous rectification and pulse-width modulation (PWM). High operating frequency $(200 \mathrm{kHz}$ or 300 kHz$)$ allows the device to operate with small external components. The current-mode

PWM architecture permits filter-capacitor values as small as $30 \mu \mathrm{~F}$ per ampere of load.

The MAX786 has fast ac response, thanks to a high ( 60 kHz ) unity-gain crossover frequency that enables recovery from line and load transients within four to five clock cycles. High-level integration and low-cost, external n-channel MOSFETs lower the system costs.

The input range is 5.5 V to 30 V . The quiescent current $(420 \mu \mathrm{~A})$ drops to $70 \mu \mathrm{~A}$ in the standby mode (when only the linear regulators are active), and to $25 \mu \mathrm{~A}$ in the shutdown mode. Other features include low-noise, fixed-frequency PWM operation for moderate to heavy loads, and a synchronizable oscillator for noise-sensitive applications such as communicating computers and electromagnetic pen-based systems.

The monolithic-BiCMOS MAX786, available in commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ versions, comes in a 28 -pin, fine-pitch, surface-mount SSOP package. Prices start at \$4.15 (1000 up, FOB USA).
(Circle 19)

## $\mu$ P-SUPERVISOR MODULE INCLUDES BACKUP BATTERY

The MAX1691 $\mu$ P-supervisor module combines an IC (MAX691A) with a 125 mA lithium battery. It reduces complexity and lowers the component count associated with power-supply monitoring and battery control in microprocessor systems.

The internal battery remains unconnected until a user connects the BATT and BATTOUT terminals. MAX1691 features include backup-battery switchover, memory-write protection, and a watchdog function that monitors software execution by asserting a reset in the absence of normal digital activity on a selected I/O line.

The MAX1691 switches automatically to an alternate power source (the backup battery) when $\mathrm{V}_{\mathrm{CC}}$ is below $\mathrm{V}_{\text {BATT }}$ and below its own reset threshold. RESET and $\overline{\text { RESET }}$ outputs assure that the controlling $\mu \mathrm{P}$ assumes a known state during power-up, power-down, and brownout conditions.

Quiescent operating current is $35 \mu \mathrm{~A}$, and standby current is $1 \mu \mathrm{~A}$ maximum.

To protect CMOS RAM from erroneous write operations during power failures, the MAX1691 gates the RAM's chip-enable signal. It disables RAM by blocking CE when reset is asserted, and delays CE no more than 10 ns during normal operation. The MAX1691 comes in a 16 -pin plastic DIP, tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ temperature range.
(Circle 20)



## ICs MONITOR $\pm 5 \mathrm{~V}$ AND $\pm 12 \mathrm{~V}(\mathrm{OR} \pm 15 \mathrm{~V})$ WITH $\pm 1.3 \%$ ACCURACY

The MAX8215 and MAX8216 voltage monitors each include a 1.25 V reference and five comparators, plus internal resistive dividers that dedicate four of the comparators to preset trip thresholds: 12 V and -12 V (MAX8215 only), 15 V and -15 V (MAX8216 only), 5 V , and -5 V . An external divider enables the fifth comparator to monitor any voltage in the range 2.7 V to 11 V .

The 5V-monitor circuit has $1.3 \%$ accuracy; all others have $\pm 2 \%$ accuracy. The 1.25 V reference is accurate to $\pm 1 \%$. All the comparators have open-drain outputs and built-in hysteresis. The maximum supply current (over temperature) for each device is $400 \mu \mathrm{~A}$.

The MAX8215/MAX8216 come in 14pin DIP and narrow-SO packages, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extended-industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. Prices start at $\$ 1.98$ (1000 up, FOB USA).
(Circle 21)


## NEW PRODUCTS

## SERIAL PORT REDUCES POWER BY FACTOR OF EGHT

- Runs at 120kbits/sec
- Drives mouse at $3 V$

The CMOS MAX212 is a 3.3 V powered RS-232 transceiver. Compared with equivalent devices, it handles higher data rates ( $120 \mathrm{kbits} / \mathrm{sec}$ ), and draws less noload current ( 3 mA at 3.3 V ). Only the MAX212 can drive a mouse at $3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$. The MAX212 is the first 3V IC to guarantee $4 \mathrm{~V} / \mu \mathrm{s}$ slew rates, $120 \mathrm{kbit} / \mathrm{sec}$ data rates, and $\pm 5 \mathrm{~V}$ minimum output swings. Its three transmitters and five receivers meet EIA/TIA-232E specifications.

Supply current drops to only $1 \mu \mathrm{~A}$ in the low-power shutdown mode. To monitor external devices, all five receivers remain active while in shutdown (subject to logic control). To accommodate different standards, each receiver output has a threestate driver that lets you wire-OR the receivers at the UART. A flow-through pinout (all driver outputs and receiver
inputs on the same side) simplifies the pc layout.

The MAX212 is compatible with EIA/TIA-232E, EIA/TIA-562 and V.28/V. 24 serial-interface standards. An evaluation kit is available. The MAX212 comes in 24-pin wide-SO packages and tiny SSOP packages, in versions tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extendedindustrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature ranges. Prices start at $\$ 3.12$ (1000 up, FOB USA).
(Circle 22)


## COMPLETE 3V SERIALDATA INTERFACE RUNS AT 230kbits/sec

The MAX562 is a 3 -driver/5-receiver serial-data transceiver capable of data rates to $230 \mathrm{kbits} / \mathrm{sec}$. Featuring a guaranteedminimum slew rate of $4 \mathrm{~V} / \mathrm{\mu s}$, the MAX562 is the fastest transceiver available among those designed specifically for notebook and palmtop computers. Its compliance with the EIA/TIA-562 standard guarantees compatibility with RS-232 ports.

Operation from 2.7 V to 5.25 V makes the MAX562 suitable for 3 V -to- 5 V systems (which provide a $3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ when running on batteries and a $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ when running on wall power). In low-power shutdown mode the device draws only $60 \mu \mathrm{~A}$ of quiescent current, yet all five receivers remain active. The MAX562 can monitor five lines in this condition, each at data rates to $20 \mathrm{kbits} / \mathrm{sec}$. During


## CALIBRATED, PRECISION VOLTAGE REFERENCES GUARANTEE $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ DRIFTIN SO PACKAGE!

- 10ppm/1khrs in SO package!

The MAX676, MAX677, and MAX678 precision voltage references produce outputs of $4.096 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V respectively. Each has an internal factorycalibrated "analog ROM" that guarantees unprecedented low temperature drifts of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Also guaranteed is a long-term drift of $10 \mathrm{ppm} / 1000 \mathrm{hrs}$.

The analog ROM—an internal network of fusable links that allows factory calibration by digital commandminimizes the output variation with temperature by making internal $\mathrm{V}_{\text {OUT }}$ adjustments at each of 16 temperatures. This calibration is performed on all units.

Each device guarantees excellent line and load regulation ( $12 \mathrm{ppm} / \mathrm{V}$ and $3 \mathrm{ppm} / \mathrm{mA}$ at $+25^{\circ} \mathrm{C}$, maximum) while sourcing as much as 5 mA or sinking as much as 0.5 mA . The output tolerance at $+25^{\circ} \mathrm{C}( \pm 0.01 \%)$ represents a maximum error of only $\pm 1 / 2$ LSB for 12 -bit data converters. Maximum output variation over the commercial and extendedindustrial temperature ranges, respectively, is $\pm 0.017 \%$ and $\pm 0.022 \%$.

Maximum input voltage is 18 V . The MAX678 minimum is 12 V , the MAX677 minimum is 8 V , and the MAX676 minimum is 4.75 V , allowing that device to operate on $5 \mathrm{~V} \pm 5 \%$. MAX676/MAX677/ MAX678 references come in 20-pin DIP and wide-SO packages, screened for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$, extendedindustrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges.
(Circle 24)

## NEW PRODUCT $S$

## 5V RS-232 <br> TRANSCEIVERS PROTECT AGAINST LARGE TRANSIENTS AND ESD

- $\pm 10 k V$ protection (human body model)

The MAX211E, MAX213E, and MAX241E are monolithic RS-232 transceivers. In many applications, these ESD-rugged ICs replace the more expensive and space-consuming Tranzorb devices currently used to protect against transient voltages and ESD.

The Maxim devices include four transmitters and five receivers. Operating from 5V, they meet all EIA/TIA-232E and CCITT V. 28 specifications at data rates to $120 \mathrm{kbits} / \mathrm{sec}$ (when loaded in accordance with EIA/TIA-232E).

Maxim's patented RS-232 charge-pump-converter technology produces internal voltages sufficient for generating output levels in full compliance with the EIA/TIA-232E specifications. Each transmitter output and receiver input can withstand ESD shocks as high as $\pm 10 \mathrm{kV}$ (human body model). And unlike bipolar RS-232 ICs, Maxim's CMOS MAX211E, MAX213E, and MAX241E handle ESD without latchup.

During shutdown, the MAX213 maintains two receivers active (using only $15 \mu \mathrm{~A}$ of current) for monitoring external signals, such as the ring indicator from a modem. MAX241E transceivers operate with $1.0 \mu \mathrm{~F}$ external capacitors, while the MAX211E and MAX213E save cost and space with $0.1 \mu \mathrm{~F}$ capacitors.

MAX211E/MAX213E/MAX241E devices come in 28 -pin wide-SO and SSOP packages (which are $60 \%$ smaller
than equivalent SO types), tested for the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ and extendedindustrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature ranges. Prices (1000 up, FOB USA) start at $\$ 3.62$.
(Circle 25)


